Pinned Post

The First Rule of Thoughtful Learning

The first rule of thoughtful learning as I see it is that, short of abuse, pretty much any pedagical technique is sometimes appropriate. The...

Saturday, March 24, 2018

Two Ideas for Promoting Transfer

Often, one of the hardest things for students to do is apply a newly learned skill in a new setting, even one that looks almost the same to the teacher. The technical term for this is transfer and promoting transfer is one of the most difficult tasks in education.

The key to transferring knowledge from one situation to another is noticing that, despite superficial differences, the two situations are somehow the same on a deeper level -- in technical terms, they share the same deep structure. For example, an arms race and the ice-albedo feedback loop that enhances warming at the poles are both situations where a change in some quantity (the amount of weapons owned by country A, the amount of ice at the north pole) leads to a further change in the same direction as the initial one. Both are positive feedback loops. Transfer would involve a student who learned about positive feedback loops in the context of arms races applying their understanding to climate change, or vice versa.

Two recent papers have described promising results in promoting transfer. One is an elaboration of methods that many teachers already use, while the other is fairly new (although we sometimes use a very similar one in LS 30 and related courses).

The first paper describes something called concreteness fading. It's exactly what it sounds like -- starting with a concrete example of a topic and then gradually moving toward a fully abstract one. In this particular study, the researchers taught second- and third-graders about equivalence problems of the type 2+5+3 = 2 + __. The teaching was done either through concrete examples (sharing stickers and making balances balance), paper-and-pencil math problems, or a concreteness fading condition that started with stickers and balances, then moved to paper representations of these things, and then moved to actual problems with numbers.
   
From http://www.learningscientists.org/blog/2018/2/1-1

After the initial learning stage, the kids were presented with problems, including word problems, more complex than anything they had been taught. This was the transfer stage. The kids who were taught entirely using concrete methods performed worst, followed by those taught abstractly. The ones taught using concreteness fading did best.

What happened? Students who only see concrete examples have a hard time generalizing. They may not see the deep structure of what they are doing. (Using a variety of examples may mitigate this but is not always practical.) Abstract learning is general but often difficult. Concreteness fading may bridge the gap between the two, making the abstract learning more effective.

The other study gave undergraduates a classic problem that was analogous to a story they had read. Most people find the analogy difficult to see unless told to look for it. However, their performance improved substantially (from a 10% success rate to a 25% one) if they were asked to come up with a problem analogous to the one they were trying to solve before actually solving it.

This is a very practical result. In some cases, it may be enough to ask students to come up with examples of a new concept, which I already do (there are a number of such problems in Modeling Life) and could do more of. For more complex problems, perhaps including programming problems, asking students to come up with a problem analogous to what they are trying to solve could make sense.  At the very least, it's worth a try.

No comments:

Post a Comment